翻訳と辞書 |
Physics applications of asymptotically safe gravity : ウィキペディア英語版 | Physics applications of asymptotically safe gravity
The asymptotic safety approach to quantum gravity provides a nonperturbative notion of renormalization in order to find a consistent and predictive quantum field theory of the gravitational interaction and spacetime geometry. It is based upon a nontrivial fixed point of the corresponding renormalization group (RG) flow such that the running coupling constants approach this fixed point in the ultraviolet (UV) limit. This suffices to avoid divergences in physical observables. Moreover, it has predictive power: Generically an arbitrary starting configuration of coupling constants given at some RG scale does not run into the fixed point for increasing scale, but a subset of configurations might have the desired UV properties. For this reason it is possible that — assuming a particular set of couplings has been measured in an experiment — the requirement of asymptotic safety fixes all remaining couplings in such a way that the UV fixed point is approached. Asymptotic safety, if realized in Nature, has far reaching consequences in all areas where quantum effects of gravity are to be expected. Their exploration, however, is still in its infancy. By now there are some phenomenological studies concerning the implications of asymptotic safety in particle physics, astrophysics and cosmology, for instance. == Asymptotic safety and the parameters of the Standard Model ==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Physics applications of asymptotically safe gravity」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|